Orthogonal least-squares algorithm for training multioutput radial basis function networks - Radar and Signal Processing, IEE Proceedings F

نویسنده

  • S.
چکیده

A constructive learning algorithm for multioutput radial basis function networks is presented. Unlike most network learning algorithms, which require a fixed network structure, this algorithm automatically determines an adequate radial basis function network structure during learning. By formulating the learning problem as a subset model selection, an orthogonal leastsquares procedure is used to identify appropriate radial basis function centres from the network training data, and to estimate the network weights simultaneously in a very efficient manner. This algorithm has a desired property, that the selection of radial basis function centres or network hidden nodes is directly linked to the reduction in the trace of the error covariance matrix. Nonlinear system modelling and the reconstruction of pulse amplitude modulation signals are used as two examples to demonstrate the effectiveness of this learning algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse multioutput radial basis function network construction using combined locally regularised orthogonal least square and D-optimality experimental des - Control Theory and Applications, IEE Proceedings-

A construction algorithm for multioutput radial basis function (RBF) network modelling is introduced by combining a locally regularised orthogonal least squares (LROLS) model selection with a D-optimality experimental design. The proposed algorithm aims to achieve maximised model robustness and sparsity via two effective and complementary approaches. The LROLS method alone is capable of produci...

متن کامل

On the efficiency of the orthogonal least squares training method for radial basis function networks

The efficiency of the orthogonal least squares (OLS) method for training approximation networks is examined using the criterion of energy compaction. We show that the selection of basis vectors produced by the procedure is not the most compact when the approximation is performed using a nonorthogonal basis. Hence, the algorithm does not produce the smallest possible networks for a given approxi...

متن کامل

Multi-output regression using a locally regularised orthogonal least-squares algorithm - Vision, Image and Signal Processing, IEE Proceedings-

The paper considcrs data modelling using multi-output regression models. A locally regularised orthogonal least-squares (LROLS) algorithm is proposed for constructing sparse multi-output regression models that generalise well. By associating each regressor in the regression model with an individual regularisation parameter, the ability of the multi-output orthogonal least-squares (OLS) model se...

متن کامل

Orthogonal Least Squares Algorithm for the Approximation of a Map and its Derivatives with a RBF Network

Abstract— Radial Basis Function Networks (RBFNs) are used primarily to solve curve-fitting problems and for nonlinear system modeling. Several algorithms are known for the approximation of a non-linear curve from a sparse data set by means of RBFNs. However, there are no procedures that permit to define constrains on the derivatives of the curve. In this paper, the Orthogonal Least Squares algo...

متن کامل

Regularized orthogonal least squares algorithm for constructing radial basis function networks

International Journal of Control Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713393989 Regularized orthogonal least squares algorithm for constructing radial basis function networks S. Chen a; E. S. Chng b; K. Alkadhimi a a Department of Electrical and Electronic Engineering, University of Portsmouth, Port...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004